A Specialized Nucleosome Modulates Transcription Factor Access to a C. glabrata Metal Responsive Promoter

نویسندگان

  • Zhiwu Zhu
  • Dennis J Thiele
چکیده

The ability of DNA binding transcription factors to access cis-acting promoter elements is critical for transcriptional responses. We demonstrate that rapid transcriptional autoactivation by the Amt1 Cu metalloregulatory transcription factor from the opportunistic pathogenic yeast Candida glabrata is dependent on rapid metal-induced DNA binding to a single metal response element (MRE). In vivo footprinting and chromatin-mapping experiments demonstrate that the MRE and a homopolymeric (dA x dT) element adjacent to the MRE are packaged into a positioned nucleosome that exhibits homopolymeric (dA x dT)-dependent localized distortion. This distortion is critical for rapid Amt1 binding to the MRE, for Cu-dependent AMT1 gene transcription, and for C. glabrata cells to mount a rapid transcriptional response to Cu for normal metal detoxification. The AMT1 promoter represents a novel class of specialized nucleosomal structures that links rapid transcriptional responses to the biology of metal homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional analysis of a homopolymeric (dA-dT) element that provides nucleosomal access to yeast and mammalian transcription factors.

Eukaryotic organisms ranging from yeast to humans maintain a large amount of genetic information in the highly compact folds of chromatin, which poses a large DNA accessibility barrier to rapid changes in gene expression. The ability of the yeast Candida glabrata to survive copper insult requires rapid transcriptional autoactivation of the AMT1 copper-metalloregulatory transcription factor gene...

متن کامل

Rapid transcriptional autoregulation of a yeast metalloregulatory transcription factor is essential for high-level copper detoxification.

Copper detoxification in the yeast Candida glabrata is carried out in large part by a family of metallothionein (MT) genes: a unique MT-I gene, a tandemly amplified MT-IIa gene, and a single unlinked MT-IIb gene. In response to elevated environmental copper levels, members of this MT gene family are transcriptionally activated by a copper-dependent, sequence-specific DNA-binding transcription f...

متن کامل

Challenging the Metallothionein (MT) Gene of Biomphalaria glabrata: Unexpected Response Patterns Due to Cadmium Exposure and Temperature Stress

Metallothioneins (MTs) are low-molecular-mass, cysteine-rich, metal binding proteins. In most animal species, they are involved in metal homeostasis and detoxification, and provide protection from oxidative stress. Gastropod MTs are highly diversified, exhibiting unique features and adaptations like metal specificity and multiplications of their metal binding domains. Here, we show that the MT ...

متن کامل

Heat shock-regulated transcription in vitro from a reconstituted chromatin template.

To investigate the mechanisms of transcriptional regulation of Drosophila heat shock genes we studied the activity of a heat shock promoter in vitro after reconstitution into chromatin. Increasing the duration of nucleosome assembly progressively inactivated a plasmid template when it was transcribed with extracts of either unshocked or heat-shocked Drosophila embryos, despite induction of the ...

متن کامل

Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone variant macroH2A.

Transcriptional activation of the interleukin-8 (IL-8) gene is restricted to distinct cell types, although the transcriptional regulatory proteins controlling IL-8 gene expression are ubiquitous. We show that cell-specific transcription of IL-8 is due to the distinct chromatin architecture on the enhancer/promoter before the arrival of the inducing signal. In expressing epithelial cells the enh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 87  شماره 

صفحات  -

تاریخ انتشار 1996